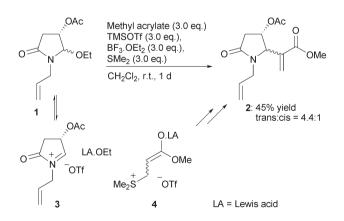
BF₃·OEt₂ and TMSOTf: A synergistic combination of Lewis acids[†]


Eddie L. Myers, Craig P. Butts and Varinder K. Aggarwal*

Received (in Cambridge, UK) 7th August 2006, Accepted 21st August 2006 First published as an Advance Article on the web 14th September 2006 DOI: 10.1039/b611333h

The combination of BF₃·OEt₂ and TMSOTf gives BF₂OTf·OEt₂, which is a more powerful Lewis acid than its components and especially effective in CH₃CN solvent; the complex formed has been characterised by ¹H, ¹⁹F, ¹¹B and ³¹P (using Et₃PO as an additive) NMR spectroscopy.

BF₃·OEt₂ and TMSOTf are powerful and commonly used Lewis acids in organic synthesis.¹ In the important and challenging area of glycosidation reactions, Nicolaou and Kishi and co-workers have found that the combination of both Lewis acids is more effective than the individual components.² In our own studies on the development of a novel Morita–Baylis–Hillman-type reaction, with (*S*)-malic acid-derived aminal **1** and methyl acrylate as partners, the combination of Lewis acids BF₃·OEt₂ and TMSOTf was found to be crucial for conversion (Scheme 1).³ We were intrigued by such a requirement, since TMSOTf alone was sufficient to generate iminium ion **3** and β -sulfonium *O*,*O*-ketene acetal **4** when **1** or methyl acrylate were employed with more reactive partners. Furthermore, while BF₃·OEt₂ is capable of catalysing the generation of iminium ion, it is not suitably active for generating a sufficient concentration of **4**.

These findings suggested to us that this combination of reagents leads to a more powerful Lewis acid. We therefore set about identifying the nature of the Lewis acid generated from a 1:1 mixture of TMSOTf and BF₃·OEt₂ in CDCl₃ by ¹H, ¹¹B (Fig. 1) and ¹⁹F (Fig. 2) NMR spectroscopy.⁴ In addition to the relevant signals for TMSOTf and BF₃·OEt₂, the spectra also displayed

Scheme 1 Synthesis of Morita–Baylis–Hillman-type adduct 2.

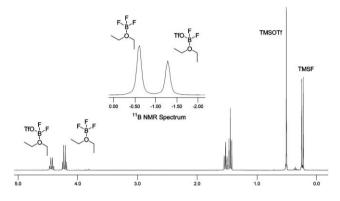
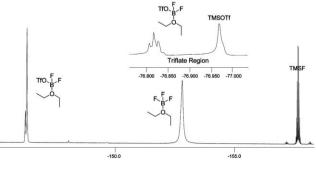



Fig. 1 ¹H and ¹¹B NMR (inset) spectra.

signals for TMSF and a species characterised as BF₂OTf·OEt₂ (5). Evidence for the latter included: (a) a set of resonances in the ¹H NMR spectrum for a diethyl ether complex (1.52 and 4.44 ppm) downfield of BF₃·OEt₂, indicative of a more powerful Lewis acid (Fig. 1); (b) a new ¹¹B environment (-1.29 ppm) resonating upfield of BF₃·OEt₂ (Fig. 1, inset); (c) the ¹⁹F NMR spectrum showed a new triflate signal appearing as a triplet (-76.8 ppm, ⁵*J*_{F-F} = 2.8 Hz) (Fig. 2, inset), indicating that it is attached to BF₂, and a boron fluoride species (-146.4 and -146.3 ppm) downfield of BF₃·OEt₂, appearing as a broad signal accompanied by a downfield isotopic satellite (*i.e.*, those fluorides attached to ¹⁰B) (Fig. 2).⁵⁻⁷

Further evidence for **5** was obtained through complexation with triethylphosphine oxide, and in particular, examination of the ³¹P and ¹H NMR spectra. Thus a 2 : 1 mixture of BF₃·OEt₂ and TMSOTf in CDCl₃ was treated with excess (4.7 equivalents) triethylphosphine oxide. The ¹H NMR spectrum showed free diethyl ether, free phosphine oxide, TMSF and two phosphine oxide complexes; furthermore, integration revealed that approximately 3 equivalents of phosphine oxide were complexed. The ³¹P NMR spectrum (Fig. 3) showed free phosphine oxide and two downfield signals in the ratio 2 : 1. The most downfield signal at

School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS8 1TS. E-mail: v.aggarwal@bristol.ac.uk; Fax: +44 (0)117 929 8611; Tel: +44 (0)117 954 6315

[†] Electronic supplementary information (ESI) available: Full experimental details with supplementary spectra and discussion. See DOI: 10.1039/ b611333h

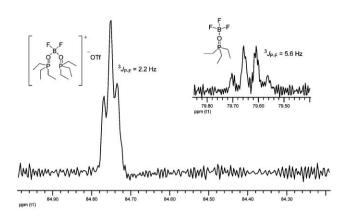


Fig. 3 ³¹P NMR spectrum of phosphine oxide complexes.

84.8 ppm appeared as a triplet $({}^{3}J_{P-F} = 2.2 \text{ Hz})$ and the other at 79.6 ppm as a quartet $({}^{3}J_{P-F} = 5.6 \text{ Hz}).^{8}$ These signals were assigned to the bis-phosphine oxide boron difluoride complex [BF₂(OPEt₃)₂]⁺OTf⁻ and the BF₃·OPEt₃ complex, respectively.⁹ When the same experiment was conducted with 0.7 equivalents of phosphine oxide, the predominant species was, tentatively, BF₂OTf·OPEt₃, appearing downfield of BF₃·OPEt₃ and slightly upfield of the bis-phosphine oxide complex at 84.6 ppm; small amounts of the bis-complex were also observed.

The presence of significant amounts of the parent Lewis acids in solution suggested a dynamic equilibrium process. This was confirmed using Le Chatelier's principle. A 1.8 : 1 solution of BF₃·OEt₂:TMSOTf in CDCl₃ was prepared and the relative concentrations of all four species were obtained by integration of the relevant signals in the ¹H NMR spectrum. Using these values, the equilibrium constant K_{eq} (Scheme 2) was determined to be 0.74. After the introduction of additional TMSOTf (0.8 equivalents), bringing the ratio of BF₃·OEt₂ : TMSOTf added to 1 : 1, the resulting relative concentrations were such that K_{eq} remained unchanged. In CD₂Cl₂, K_{eq} was determined to be 0.69.

We were interested in comparing the Lewis acidity of BF₂OTf with other Lewis acids; evidence already in hand (*i.e.*, in the ¹H NMR spectrum, the downfield shift of its etherate complex relative to that of BF₃) suggesting it to be the stronger Lewis acid (Fig. 1). Childs and co-workers determined a relative order of Lewis acidity by measuring the downfield shift of the H3 proton of crotonaldehyde [$\Delta\delta$ (H3)] upon its complexation with a Lewis acid.¹⁰

As an initial test, a solution of $BF_3 \cdot OEt_2$ in CDCl₃ with 0.25 equivalents of crotonaldehyde was analysed by ¹H NMR spectroscopy at 15 °C. At this temperature, it became apparent that BF_3 was rapidly exchanging aldehyde and diethyl ether ligands, resulting in severely broadened resonances; Childs and coworkers used gaseous BF_3 as the source.¹⁰ In order to slow down ligand exchange, the NMR sample was cooled to just above the freezing point of CDCl₃ (-55 °C). At this temperature, the

$$BF_{3} \cdot OEt_{2} \quad TMSOTf \implies BF_{2}OTf \cdot OEt_{2} \quad TMSF$$

$$K_{eq} = \frac{[BF_{2}OTf \cdot OEt_{2}] \cdot [TMSF]}{[BF_{3} \cdot OEt_{2}] \cdot [TMSOTf]}$$
Scheme 2 Calculation of K_{eq} .

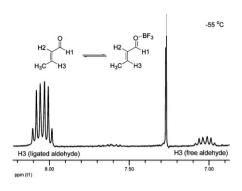


Fig. 4 Observance of BF₃-crotonaldehyde complex.

spectrum showed well resolved resonances for unligated aldehyde, ligated aldehyde, unligated ether and ligated ether (Fig. 4). $\Delta\delta$ (H3) was measured to be 1.10 ppm, which is within 0.1 ppm of the value given by Childs.¹⁰

A similar experiment was conducted with TMSOTf as the Lewis acid in CD₂Cl₂. At room temperature, there was one set of sharp resonances for crotonaldehyde and TMSOTf, and $\Delta\delta(H3)$ was found to be ~0.2 ppm.¹¹ The single set of sharp resonances suggest a ligand exchange process which is much faster than that with BF₃ as the Lewis acid, and the relatively small $\Delta\delta(H3)$ suggests that the equilibrium lies very much towards unligated aldehyde. The ability of silicon to exchange ligands *via* an associative mechanism may account for this increased rate. Cooling to as low as -90 °C did not result in decoalescence (see ESI†).

A 1 : 1 solution of BF₃·OEt₂ and TMSOTf in CDCl₃ with crotonaldehyde (0.25 equivalents) was then analysed by ¹H NMR at room temperature and -55 °C. At room temperature, two sets of H3 resonances were apparent: a sharp signal and a broader one further upfield. Upon cooling to -55 °C, the former had shifted slightly downfield but remained sharp, while the latter split into two signals: a sharp downfield resonance and a broad upfield resonance close to the expected chemical shift of the free aldehyde (Fig. 5). Moving in an upfield direction, the resonances were assigned to the BF₂OTf complex [$\Delta\delta$ (H3) = 1.4 ppm], the BF₃ complex [$\Delta\delta$ (H3) = 1.1 ppm], and rapidly exchanging TMSOTf complex and free aldehyde. After comparison with the $\Delta\delta$ (H3) data of a range of Lewis acids, as measured by Childs, it is clear that BF₂OTf is a very powerful Lewis acid, possessing a Lewis acidity that lies between those of BCl₃ and BBr₃.¹⁰

The success of the Morita-Baylis-Hillman-type reaction (Scheme 1) is tentatively attributed to a higher concentration of

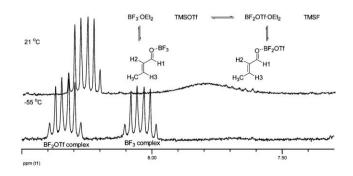
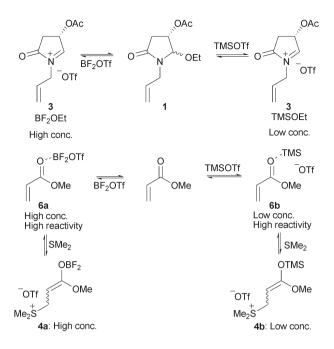
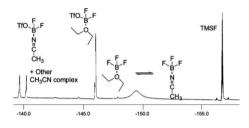




Fig. 5 Observance of a BF₂OTf-crotonaldehyde complex.

Scheme 3 Superiority of BF₂OTf over TMSOTf in synthesis.

Fig. 6 ¹⁹F NMR spectrum of $BF_3 \cdot OEt_2$ and TMSOTf in CH_3CN .

iminium ion **3** and β -sulfonium enolate **4** due to the involvement of BF₂OTf. The above studies suggest that the superiority of BF₂OTf in achieving this is a reflection of its increased Lewis acidity over BF₃, the increased concentration of activated acrylate **6a**, and the increased stability (and thus concentration) of β -sulfonium enolate **4a** and BF₂OEt, the latter being a product of aminal fragmentation. Although TMSOTf-activated acrylate may be more reactive, its concentration is very low. Furthermore, the resultant silyl enol ether, **4b**, is less stable with respect to acrylate (Scheme 3).¹²

Since it has been demonstrated that mixtures of TMSOTf and BF₃·OEt₂ in CH₃CN represent superior conditions for effecting glycosidation reactions,² the mixture in CH₃CN was also analysed by ¹H and ¹⁹F NMR spectroscopy. The ¹H NMR spectrum (acquired with solvent suppression) showed TMSF, TMSOTf and two sets of etherate signals, the latter pair representing the BF₃ and BF_2OTf complexes. Integration revealed that 5 was present in much smaller proportions relative to $BF_3 \cdot OEt_2$ (~3 : 1) in comparison to that observed in chlorinated solvents. Furthermore, the molar ratio of TMSF to 5 was 2.4 : 1. The reason for the anomalous integration value became clear following analysis of the ¹⁹F NMR spectrum (Fig. 6). In addition to TMSF, BF₂OTf·OEt₂ and a broad signal corresponding to rapidly exchanging BF₃·OEt₂ and BF₃·CH₃CN, the spectrum also contained two further ¹¹Bfluoride environments (140.2 and 139.7 ppm), which are tentatively assigned to BF2OTf·CH3CN and [BF2(CH3CN)2]+OTf-.

When the Morita–Baylis–Hillman-type reaction (Scheme 1) was conducted in CH₃CN, the yield of **2** was substantially improved (85% yield). This can be attributed to the increased solvent stabilisation of ionic intermediates and/or $BF_2OTf \cdot CH_3CN$ being a more efficient transporter of Lewis acid to the substrate.

To conclude, we have demonstrated that in chlorinated solvents, $BF_3 \cdot OEt_2$ and TMSOTf are in equilibrium with TMSF and $BF_2OTf \cdot OEt_2$. In CH₃CN, there is evidence for the competing complex $BF_2OTf \cdot CH_3CN$. BF_2OTf has a Lewis acidity similar to that of BCl₃/BBr₃, but with the advantage of being tolerant to a wide range of functional groups (the latter reagents can release nucleophilic halide, which may nurture unwanted processes). Our laboratory and others have demonstrated that the employment of such a mixture in synthesis can be more effective than the parent Lewis acids alone. We are currently investigating other applications, particularly harnessing the mixture's potential as a source of bidentate Lewis acid.

We thank EPSRC and DSM for financial support.

Notes and references

- Lewis Acids in Organic Synthesis, ed. H. Yamamoto, Wiley-VCH, Weinheim, 2000, vol. 1; A. D. Dilman and S. L. Ioffe, *Chem. Rev.*, 2003, 103, 733.
- 2 K. C. Nicolaou, C.-K. Hwang and M. E. Duggan, J. Am. Chem. Soc., 1989, 111, 6682; C. Y. Hong and Y. Kishi, J. Am. Chem. Soc., 1991, 113, 9693.
- 3 E. L. Myers, J. G. de Vries and V. K. Aggarwal, J. Am. Chem. Soc., submitted.
- 4 ¹H NMR spectra were referenced to the residual solvent signal (7.27 ppm for CDCl₃), while the ¹⁹F, ¹¹B and ³¹P NMR spectra were externally referenced against CCl₃F, BF₃·OEt₂ and H₃PO₄ (85%), respectively.
- 5 Gray, Jun and co-workers observed a similar phenomenon with mixtures of BF₃·OEt₂ and TMSOMs while investigating conditions for the reductive cleavage of per-O-methylated D-glucans and D-fructans. Upon addition of 0.2 equivalents of BF₃·OEt₂ to 1.0 equivalent of TMSOMs in CDCl₃, "in addition to the expected resonances of diethyl ether," the ¹H NMR spectrum exhibited signals corresponding to TMSF, TMSOMs and a new (OMs) signal: J.-G. Jun and G. R. Gray, *Carbohydr. Res.*, 1987, 163, 247; J.-G. Jun, T. H. Ha and D.-W. Kim, *Tetrahedron Lett.*, 1994, 35, 1235. Olah and co-workers have demonstrated that neat mixtures of BBr₃ or BCl₃ and silyl triflate undergo a similar ligand exchange process: G. A. Olah, K. Laall and O. Farooq, *Organometallics*, 1984, 3, 1337.
 6 Integration of the ¹H and ¹⁹F NMR signals revealed a non-equimolar
- 6 Integration of the ¹H and ¹⁹F NMR signals revealed a non-equimolar relationship between TMSF and the most downfield etherate or boron fluoride signal, respectively, favouring the former (1.25 : 1). Upon tilting the NMR tube, a transparent grainy material was observed adhering to the inner surface, suggestive of hydrolysed Lewis acid and/or a sparingly soluble 5. Decantation of the mixture and introduction of fresh solvent confirmed that 5 is indeed sparingly soluble in CDCl₃.
- 7 Small amounts of Me₂SiF₂ (\sim 2%) were also detected.
- 8 Fine coupling was not observed in the ¹⁹F spectrum due to broadening.
- 9 The triethylphosphine oxide complex of BF₃ is known: M. A. Beckett, G. C. Strichland, J. R. Holland and K. S. Varma, *Polymer*, 1996, 37, 4629.
- 10 R. F. Childs, D. L. Mulholland and A. Nixon, *Can. J. Chem.*, 1982, 60, 801.
- 11 It is known that the addition of crotonaldehyde to a solution of TMSOTf results in a relatively small downfield shift of the H3 proton. On the other hand, the use of TMSNTf₂ results in a very large downfield shift [$\Delta\delta$ (H3) = 1.81 ppm]: B. Mathieu and L. Ghosez, *Tetrahedron Lett.*, 1997, **38**, 5497.
- 12 The ³¹P chemical shifts of the triethylphosphine oxide complexes formed from TMSOTf, BF₂OTf·OEt₂ and BF₃·OEt₂ suggest the following decreasing order of Lewis acidity: TMS⁺ > BF₂OTf > BF₃. See the ESI† for spectra and a discussion.